


Breaking down monolithic applications 
with OpenShift Virtualisation

Matt Kimberley
Specialist Solution Architect
Red Hat



Lets recap…



Migrate and then Modernise

Existing Monolith / 
Application

1

OpenShift

2

OpenShift

Integration

3

OpenShift

4

OpenShift

5

Migration of service to Breaking down the monolith

Automated delivery & better Ops Now easier to modernise

Deployed on Server

Continued incremental improvement Legacy monolith retired



Getting there can feel like this…

● More than 40 people started the 
Barkley Marathon in 2023

● Only 3 Finished.



OpenShift



A Modern application platform with comprehensive lifecycle 
and infrastructure management

Multi-cluster 
management

Consistent
environments

Automated 
build and 

deployment

Virtualized 
and 

containerized 
workloads

CI/CD
pipelines

App logs and 
metrics

Load 
balancing

Software-
defined 

networking

Self-service 
provisioning

Micro-
segmentation Service mesh Cost 

management

Software-
defined 
storage

Virtual 
machine 

management

Configuration 
management GitOps



OpenShift 
Virtualisation



OpenShift Virtualisation

● Virtual machines
○ Run on the KVM Hypervisor on an OpenShift worker node
○ Managed by orchestration pod

● Scheduled, deployed, and managed by Kubernetes
○ Provides high availability in the event of OCP node outage

● Integrated with OpenShift resources and services
○ Traditional Pod-like SDN connectivity
○ Connectivity to external VLAN and other networks via multus
○ Persistent storage delivers storage to virtual machines



KVM

● KVM is well established long serving hypervisor
● KVM provides hardware Virtualisation

○ Used by Red Hat Virtualisation, Red Hat OpenStack 
Platform, and RHEL and others.

○ Operates on the OpenShift worker nodes

● QEMU provides hardware emulation
● libvirt provides a management abstraction layer and 

API for interaction with the virtual machines

HARDWARE

RHCOS
KVM

CPU/RAM STORAGE NETWORK

DRIVER DRIVER DRIVER

QEMU
libvirt



Virtual machines in a container world

● Transition application components (which can’t be 
directly containerized) into an OpenShift environment
○ Integrates directly into OpenShift
○ Follows Kubernetes paradigms:

■ Container Networking Interface (CNI) 
■ Container Storage Interface (CSI)
■ Custom Resource Definitions (CRD, CR)

● Schedule, connect, and consume VM resources as 
container-native

RHEL CoreOS

OpenShift

Physical Machine

VM pod App pod 



Virtualisation native to Kubernetes

New CustomResourceDefinitions (CRDs) for native VM integration

VirtualMachine

CPU, disks, 
network, volumes

VirtualMachineInstance “Running 
instance”

VirtualMachine
InstanceMigration

Migrate running instance 
from node to node

VirtualMachine
Snapshot

Take a snapshot of a virtual 
machine



Changing our 
mindset



Monolithic Applications

Presentation Layer

Service Layer

Persistence Layer

DB LB

● High Availability typically 
provided at VM level

● Routing and LB usually 
provided by an appliance

● Relatively long build and 
release cycles

● Complex execution 
workflows



Microservices on OpenShift with VMs

Microservice UI

DB

Microservice

Microservice

Microservice

DB

Microservice

DB

● Availability at the Pod level, 
and node level

● Routing and LB controlled 
by routes and services

● Pod and VM deployment is 
quick and self serving in 
nature



Cloud Native VM Builds

OpenShift GitOps

OpenShift Pipelines

Source Code 
Repository

- Application 
Configuration

- Application Source 
Code

- Container Image files

Deployed 
Application

Container 
Image

Container Image 
Repository

- Virtual Machine 
Templates

Golden Image 
e.g. AWS S3

Custom VM DV



Using VMs and containers together

● Virtual machines connected to pod 
networks are accessible using standard 
Kubernetes methods:
○ Service
○ Route
○ Ingress

● Network policies apply to VMs (via pods) 
the same as application pods

● VM-to-pod, and vice-versa, communication 
happens over SDN or ingress depending on 
network connectivity



From the core to 
the edge



Consolidation of OpenShift Clusters with Hosted Control Planes

Increase Utilization of Infrastructure

Physical Hardware

VM 
worker

VM 
worker

VM 
worker

VM 
worker

VM 
worker

VM 
worker

VM 
worker

VM 
worker

VM 
worker

api-s
erver

etcd

…

api-s
erver

etcd

…

api-s
erver

etcd

…

Control Planes
(hosted in OCP)

Worker Nodes 
(hosted in VMs on OCP)

Virtual Machines

● Eliminate the need to have legacy hypervisor 
layer to host your containerized infrastructure

● Underlying virtualization layer is included with 
hosted OpenShift cluster entitlements (no 
separate licensing needed)

● Consolidate multiple control planes to reduce 
unused and underutilized infrastructure 

● Increase bare metal node utilization by hosting 
virtual worker nodes for multiple clusters

Reduce Dependency on Legacy 
Virtualization



Demo



Our Environment



Our example application



Let explore

● The OpenShift Virtualisation Operator

● Storage

● Networking

● Creating VMs from Templates

● How Pods Interact with VMs



Q&A

matt.kimberley@redhat.com

Further Information:
https://www.redhat.com/en/technologies/cloud-computing/openshift/virtualization

https://www.redhat.com/en/technologies/cloud-computing/openshift/virtualization


linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you


